

Motivation & Contribution

TL;DR

Existing prompt tuning methods struggle with class confusion due to frozen encoders and often sacrifice task specialization for better generalization across unseen domains.

We propose CoCoA-Mix, a novel framework combining a Confusion-Aware Loss (CoA-loss) to refine decision boundaries for confusing classes, and Confidence-Aware Weights (CoA-weights) to balance specialization and generalization in a mixture model.

Contribution

- We provide a mathematical framework demonstrating that specialization and generalization can be improved simultaneously.
- We propose a CoCoA-Mix framework, consisting of CoA-loss and CoAweights. CoA-loss boosts specialization by improving classification for confusing cases, while CoA-weights improve generalization by adjusting the weights of individual prompts in the mixture model based on their confidence over class domains.
- The proposed method achieves average harmonic mean improvements of 15.28% and 3.28% over zero-shot CLIP in base-to-new generalization and cross-dataset transfer, respectively; it also improves the average accuracy in few-shot class-incremental learning by 5.6%p.

CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization

Methodology

seen unseen domain win-win CoCoA-Mix Falcon 2000 Cessna 560

CoCoA-Mix (Confusion-and-Confidence-Aware Mixture Model) Visual [class]. Text class tokens Encoder \rightarrow $-\diamond > s_{t_0} + \diamond > s_{t_0} + \diamond > s_{t_0} + \diamond > s_{t_0} + \diamond > s_{t_0} + \delta > s_{t_$ [class]. "A photo of " hand-crafted prompt t_0 class tokens in-class out-class

unseen domains).

The expected error of the mixture model can be bounded as follows:

$$\epsilon_T(\hat{p}_T^{\boldsymbol{\pi}}) \leq \sum_{i=0}^K \lambda_i \left(\pi_i^{\text{in}} \underbrace{\epsilon_{T_i}}_{\text{special}} \right)$$

- \hat{p}_t : prediction with a text prompt t
- $\mathcal{T} = \{ \boldsymbol{t}_0, \boldsymbol{t}_1, \cdots, \boldsymbol{t}_K \}$: K+1 different prompts
- \blacktriangleright The class set of the target domain \mathcal{D}_T be partitioned into K+1 disjoint subsets, with corresponding sub-domains $\mathcal{D}_{T_0}, \mathcal{D}_{T_1}, \cdots, \mathcal{D}_{T_K}$, such that $\mathcal{D}_T = [$
- ▶ $\lambda_i = \Pr_{(\mathbf{x},y) \sim \mathcal{D}_T}[(\mathbf{x},y) \in \mathcal{D}_{T_i}]$: the probability that a sample from \mathcal{D}_T belongs to \mathcal{D}_{T_i}
- Confusion-Aware Loss (CoA-loss): To enhance specialization, CoA-loss prompt tuning.

$$\mathcal{L}_{\text{prompt}} = \mathcal{L}_{\text{CE}} + w\mathcal{L}_{\text{CoA}}$$
$$\mathcal{L}_{\text{CoA}}(\mathbf{x}, y; \hat{p}_t) = 1 - \hat{p}_t(y)$$

Confidence-Aware Weights (CoA-weights): prompts.

In-Class Weights

 $\pi_i^{\text{in}} = \arg\min_{in} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{S_i}} [\mathcal{L}_{\text{CE}}(\mathbf{x}, y; \hat{p}_{\mathcal{T}}^t)]$

Dasol Hong¹, Wooju Lee¹, Myung Hyun¹ ¹Urban Robotics Lab., KAIST

In-Class Weights

$$\pi_i^{\text{out}} = \arg\min_{\pi_i^{\text{out}}} \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}_{S_i}} [\mathcal{L}_{\text{Ent}}(\mathbf{x}; \hat{p}_{t_i}, \hat{p}_{t_0})]$$
$$\mathcal{L}_{\text{Ent}} = \max(0, H(\hat{p}_{t_0}) - H(\hat{p}_{t_i}) + d)$$

Experiments & Analysis Comparative Study CoCoA-Mix is evaluated on 11 datasets across three tasks—base-to-new generalization, few-shot class-incremental learning (FSCIL), and cross-dataset transfer—demonstrating its broad applicability. Base-to-New Generalization Method Base CLIP COOP 77.23ProGrad KGCOOP MAPLE DEPT COA-LOSS CoCoA-MIX 79.31Method BASE CLIP 94.10 ± 0.73 95.00 ± 0.31 94.65 ± 0.15 94.80 ± 0.94 94.00 ± 0.29 94.90 ± 0.49 COCOA-MIX 95.16 ± 0.38 BASE 71.22 ± 1.13 5 $72.92 \pm 1.05 = 5$ $70.40 \pm 2.57 = 58$ 74.40 ± 0.83 COA-LOSS 73.23 ± 2.02 COCOA-MIX | 72.80 ± 1.89 | 6 **FSCIL** Cross-Dataset Transfer (Few-Shot Class-Incremental Learning) Method L2P CLIP-ZSL COOP-FSCI FACT w/ CLIP 87.8FSPT-FSCIL **Analysis & Ablation Study** hard 99.8 (25.2%)57.25 57.0%) nfusing ---- CE ---- CE ---- CE 7.8%99.6 ----- CE+CoA ----- CE+CoA ----- CE+CoA 100 50 training epoch training epoch training epoch Base New H Backbone Method Ensemble Loss ViT-B/16 RN50 + RN101 + ViT-B/16 + ViT-B/32 Analyses show that CoA-loss significantly boosts performance on confusing samples, while CoA-weights improve generalization across domains without sacrificing specialization.

RAGE		I	MAGENET	CALTECH101			Food101				
NEW	Н	BASE	NEW	Н	BASE	NEW	Н	BASE	NEW	Н	
68.78	66.82	64.43	60.04	62.16	90.64	91.16	90.90	83.58	84.95	84.26	
68.56	71.33	73.72 ± 0.29	64.94 ± 0.87	69.05	97.16 ± 0.16	93.92 ± 0.80	95.51	89.19 ± 0.19	88.45 ± 0.89	88.81	
72.19	75.06	74.81 ± 0.29	66.68 ± 0.26	70.51	97.50 ± 0.08	95.49 ± 0.27	96.48	89.33 ± 0.08	89.93 ± 0.58	89.63	
74.62	76.38	75.44 ± 0.08	69.43 ± 0.29	72.31	97.61 ± 0.33	94.80 ± 0.45	96.18	90.26 ± 0.11	91.25 ± 0.15	90.75	
72.91	74.69	75.40 ± 0.29	70.43 ± 0.12	72.83	97.47 ± 0.31	93.77 ± 1.11	95.57	89.37 ± 0.54	90.77 ± 0.54	90.06	
66.36	71.78	73.50 ± 0.22	70.00 ± 0.16	71.71	97.83 ± 0.05	95.83 ± 0.25	96.82	89.80 ± 0.08	88.10 ± 0.16	88.94	
73.66	76.15	75.68 ± 0.00	67.98 ± 0.31	71.62	97.94 ± 0.14	94.54 ± 0.24	96.21	90.11 ± 0.18	90.87 ± 0.42	90.49	
75.10	77.03	75.47 ± 0.09	68.92 ± 0.10	72.04	98.02 ± 0.03	94.39 ± 0.10	96.17	90.09 ± 0.16	90.93 ± 0.09	90.50	
NDPETS		STANFORDCARS			FLOWERS102			FgvcAircraft			
NEW	Н	BASE	NEW	Н	BASE	NEW	Н	BASE	NEW	Н	
94.24	92.07	55.37	66.65	60.49	69.23	73.90	71.49	19.51	24.60	21.76	
$.42 \pm 4.17$	94.16	69.54 ± 0.75	71.39 ± 1.28	70.44	90.60 ± 1.50	67.00 ± 1.04	77.01	26.17 ± 7.89	19.50 ± 11.94	11.46	
$.36 \pm 0.42$	96.16	71.45 ± 0.39	73.16 ± 0.58	72.29	91.36 ± 0.63	74.92 ± 0.90	82.32	34.21 ± 1.99	28.53 ± 2.08	30.97	
$.59\pm0.08$	96.10	68.64 ± 0.35	74.96 ± 0.53	71.66	90.09 ± 0.63	76.31 ± 0.42	82.63	33.43 ± 0.56	32.27 ± 1.19	32.81	
$.67 \pm 0.21$	96.21	67.97 ± 0.29	74.40 ± 0.45	71.04	88.03 ± 1.62	73.43 ± 0.49	80.06	31.67 ± 0.66	33.13 ± 2.38	32.29	
$.63 \pm 0.78$	91.23	71.83 ± 0.52	59.27 ± 0.76	64.94	94.53 ± 0.53	66.30 ± 1.42	77.92	35.93 ± 0.93	24.33 ± 0.09	29.01	
$.93 \pm 0.08$	96.39	72.70 ± 0.11	73.07 ± 1.27	72.87	88.89 ± 1.75	75.58 ± 1.31	81.67	33.91 ± 0.68	32.47 ± 0.37	33.17	
$.60 \pm 0.09$	96.36	73.09 ± 0.25	74.97 ± 0.08	74.01	91.04 ± 1.79	77.37 ± 0.38	83.64	33.51 ± 0.28	34.15 ± 0.14	33.83	
ГD		EUROSAT			UCF101			SUN397			
NEW	H	BASE	NEW	Н	BASE	NEW	Н	BASE	NEW	Н	
54.71	53.97	54.79	66.21	59.96	69.03	69.61	69.32	66.76	70.52	68.59	
$.62 \pm 3.45$	61.03	79.93 ± 1.07	64.79 ± 6.36	71.19	80.58 ± 0.66	64.11 ± 2.84	71.32	77.37 ± 0.66	72.06 ± 1.56	74.60	
$.56 \pm 2.43$	59.35	81.29 ± 3.36	69.81 ± 5.56	74.80	80.97 ± 0.29	73.32 ± 1.85	76.93	79.16 ± 0.36	74.34 ± 0.75	76.20	
$.14 \pm 1.53$	65.28	83.20 ± 0.72	70.51 ± 9.30	75.61	80.09 ± 0.24	77.75 ± 0.40	78.90	79.07 ± 0.24	76.78 ± 0.24	77.91	
$.40 \pm 3.00$	63.71	76.50 ± 3.85	55.70 ± 3.19	64.27	78.57 ± 2.11	76.60 ± 1.56	77.53	78.33 ± 0.21	77.67 ± 0.45	78.00	
$.13 \pm 1.07$	61.98	78.70 ± 1.56	50.53 ± 5.71	61.08	81.57 ± 0.84	66.53 ± 0.87	73.28	79.10 ± 0.22	67.27 ± 0.46	72.70	
$.09 \pm 0.81$	64.76	83.38 ± 0.49	70.07 ± 2.49	76.09	80.83 ± 0.80	74.22 ± 0.91	77.38	78.70 ± 0.25	75.43 ± 0.72	77.03	
$.29 \pm 1.25$	68.25	83.49 ± 0.66	69.11 ± 3.10	75.54	81.28 ± 0.95	77.75 ± 0.24	79.47	78.51 ± 0.17	76.60 ± 0.24	77.54	

	$ACC(\%)^{\uparrow}$							Method	SOURCE	TARGET			
1	2	3	4	5	6	7	8	Mean↑	PD↓	CLIP	66.73	64.89	_
6.0	81.8	80.3	80.0	74.6	73.2	72.6	65.0	78.2	24.9	СоОр	69.06 ± 0.43	59.88	
_	_	_	_	_	_	_	_	77.9	_	ProGrad	70.21 ± 0.16	62.36	
'8.9	77.5	76.0	76.8	78.3	79.2	79.8	79.3	79.4	9.3	KGCOOP	70.52 ± 0.05	64.45	
34.0	81.4	78.0	77.8	76.3	75.0	72.5	71.9	78.3	15.9	MAPLE	69.53 ± 0.39	65.24	
33.1	81.9	80.7	80.4	79.9	80.1	79.9	79.4	81.4	7.5	DEPT	68.03 ± 0.09	65.06	
35.6	84.6	82.7	82.8	82.5	82.3	81.8	80.8	83.5	7.4	CoCoA-MIX	70.85 ± 0.09	65.27	

CLIP	-	-	65.1	68.8	66.8
CLIP (w/ Ensemble)	-	Uniform Ensemble	70.6	74.3	72.3
CoA-loss (w/o Ensemble)	CoA-loss	-	78.6	68.5	72.9
CoA-loss (w/ Ensemble)	CoA-loss	Uniform Ensemble	79.1	73.7	76.2
CoCoA-Mix	CoA-loss	CoA-weights	79.3	75.1	77.0
T _{En} + CoCoOp	CoCoOp	Sample-Aware Weight Generator	84.1	75.5	79.2
T_{En} + CoA-Loss	CoA-loss	Sample-Aware Weight Generator	85.3	75.2	79.5
CoCoA-Mix	CoA-loss	CoA-weights	85.4	76.3	80.3