Object-aware domain generalization for object detection
AAAI'24 (Oral)
OA-DG is an effective method for single-domain object detection generalization (S-DGOD). It consists of two components: OA-Mix for data augmentation and OA-Loss for reducing domain gaps.
Multi-level transformation enhances the domain diversity of the augmented image without damaging the object locations.
In object detection, each object in an image has different characteristics, such as size, location, and color distribution. Depending on these object-specific characteristics, some transformations can damage the semantic features of an object.
Object-aware mixing enhances the affinity of the augmented image, mitigating the negative effects of transformations.

The left and right images are the original and OA-Mixed images, respectively:
We evaluated the robustness of our method for common corruptions and various weather conditions in urban scenes. mPC is an evaluation metric of robustness against out-of-distribution (OOD).


| Class | GTs | Dets | Recall | AP |
|---|---|---|---|---|
| aeroplane | 1738 | 9711 | 0.799 | 0.561 |
| bicycle | 1046 | 6165 | 0.716 | 0.491 |
| bird | 95339 | 325982 | 0.880 | 0.763 |
| boat | 537 | 3151 | 0.702 | 0.462 |
| bottle | 12309 | 76318 | 0.764 | 0.557 |
| bus | 787 | 3410 | 0.654 | 0.489 |
| car | 5029 | 28229 | 0.835 | 0.582 |
| mAP | 0.558 |
| Class | GTs | Dets | Recall | AP |
|---|---|---|---|---|
| aeroplane | 2012 | 15307 | 0.688 | 0.395 |
| bicycle | 1410 | 9151 | 0.616 | 0.371 |
| bird | 241616 | 1409587 | 0.846 | 0.639 |
| boat | 665 | 13191 | 0.498 | 0.178 |
| bottle | 17566 | 185415 | 0.710 | 0.439 |
| bus | 841 | 4907 | 0.447 | 0.271 |
| car | 4853 | 41633 | 0.714 | 0.412 |
| mAP | 0.386 |
| Class | GTs | Dets | Recall | AP |
|---|---|---|---|---|
| aeroplane | 820 | 3953 | 0.604 | 0.382 |
| bicycle | 322 | 2469 | 0.481 | 0.285 |
| bird | 34240 | 180293 | 0.835 | 0.681 |
| boat | 110 | 1508 | 0.336 | 0.132 |
| bottle | 5144 | 27022 | 0.525 | 0.325 |
| bus | 169 | 1186 | 0.331 | 0.214 |
| car | 2235 | 13158 | 0.703 | 0.449 |
| mAP | 0.353 |
| Class | GTs | Dets | Recall | AP |
|---|---|---|---|---|
| aeroplane | 248 | 1158 | 0.468 | 0.289 |
| bicycle | 121 | 1088 | 0.223 | 0.123 |
| bird | 21655 | 174857 | 0.668 | 0.356 |
| boat | 49 | 1635 | 0.143 | 0.010 |
| bottle | 1532 | 20963 | 0.378 | 0.139 |
| bus | 71 | 560 | 0.169 | 0.120 |
| car | 499 | 4383 | 0.463 | 0.220 |
| mAP | 0.180 |
| Class | GTs | Dets | Recall | AP |
|---|---|---|---|---|
| aeroplane | 554 | 1882 | 0.493 | 0.324 |
| bicycle | 4920 | 17470 | 0.500 | 0.324 |
| bird | 33392 | 81460 | 0.714 | 0.626 |
| boat | 911 | 4301 | 0.497 | 0.319 |
| bottle | 21530 | 62759 | 0.527 | 0.420 |
| bus | 2363 | 6609 | 0.530 | 0.426 |
| car | 736 | 6068 | 0.497 | 0.267 |
| mAP | 0.387 |
@inproceedings{lee2024object, title={Object-Aware Domain Generalization for Object Detection}, author={Lee, Wooju and Hong, Dasol and Lim, Hyungtae and Myung, Hyun}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={38}, number={4}, pages={2947--2955}, year={2024} }
powered by Academic Project Page Template